
https://www.tutorialspoint.com/compile_jav
a_online.php

Go to the Execute tab to run online

Inheritance and Polymorphism

https://www.tutorialspoint.com/compile_java_online.php

Review: Classes

⬧ User-defined data types

⬧ Defined using the “class” keyword

⬧ Each class has associated

⬧ Data members (any object type)

⬧ Methods that operate on the data

⬧ New instances of the class are declared using the

“new” keyword

⬧ “Static” members/methods have only one copy,

regardless of how many instances are created

Java Programming: Program Design Including Data Structures 2

Example: Shared Functionality

Java Programming: Program Design Including Data Structures 3

public class Student {

String name;

char gender;

Date birthday;

Vector<Grade> grades;

double getGPA() {

…

}

int getAge(Date today) {

…

}

}

public class Professor {

String name;

char gender;

Date birthday;

Vector<Paper> papers;

int getCiteCount() {

…

}

int getAge(Date today) {

…

}

}

Java Programming: Program Design Including Data Structures 4

public class Person {

String name;

char gender;

Date birthday;

int getAge(Date today) {

…

}

}

public class Student

extends Person {

Vector<Grade> grades;

double getGPA() {

…

}

}

public class Professor

extends Person {

Vector<Paper> papers;

int getCiteCount() {

…

}

}

Java Programming: Program Design Including Data Structures 5

Inheritance

⬧ “is-a” relationship

⬧ Single inheritance:

⬧ Subclass is derived from one existing class

(superclass)

⬧ Multiple inheritance:

⬧ Subclass is derived from more than one superclass

⬧ Not supported by Java

⬧ A class can only extend the definition of one class

Java Programming: Program Design Including Data Structures 6

Inheritance (continued)

modifier(s) class ClassName extends ExistingClassName

modifier(s)

{

memberList

}

Java Programming: Program Design Including Data Structures 7

Inheritance:

class Circle Derived from

class Shape

public class Circle extends Shape

{

.

.

.

}

Inheritance

⬧ Allow us to specify relationships between types

⬧ Abstraction, generalization, specification

⬧ The “is-a” relationship

⬧ Examples?

⬧ Why is this useful in programming?

⬧ Allows for code reuse

⬧ More intuitive/expressive code

Code Reuse

⬧ General functionality can be written once and applied

to *any* subclass

⬧ Subclasses can specialize by adding members and

methods, or overriding functions

Inheritance: Adding Functionality

⬧ Subclasses have all of the data members and

methods of the superclass

⬧ Subclasses can add to the superclass

⬧ Additional data members

⬧ Additional methods

⬧ Subclasses are more specific and have more

functionality

⬧ Superclasses capture generic functionality common

across many types of objects

Java Programming: Program Design Including Data Structures 10

Java Programming: Program Design Including Data Structures 11

public class Person {

String name;

char gender;

Date birthday;

int getAge(Date today) {

…

}

}

public class Student

extends Person {

Vector<Grade> grades;

double getGPA() {

…

}

}

public class Professor

extends Person {

Vector<Paper> papers;

int getCiteCount() {

…

}

}

Brainstorming

⬧ What are some other examples of possible

inheritance hierarchies?

⬧ Person -> student, faculty…

⬧ Shape -> circle, triangle, rectangle…

⬧ Other examples???

Java Programming: Program Design Including Data Structures 12

Java Programming: Program Design Including Data Structures 13

UML Diagram: Rectangle

What if we want to implement a 3d box object?

Java Programming: Program Design Including Data Structures 14

Objects myRectangle and

myBox
Rectangle myRectangle = new Rectangle(5, 3);

Box myBox = new Box(6, 5, 4);

Java Programming: Program Design Including Data Structures 15

UML Class Diagram: class Box

Both a Rectangle and a Box have a surface area,

but they are computed differently

Overriding Methods

⬧ A subclass can override (redefine) the methods of the

superclass

⬧ Objects of the subclass type will use the new method

⬧ Objects of the superclass type will use the original

Java Programming: Program Design Including Data Structures 16

Java Programming: Program Design Including Data Structures 17

class Rectangle

public double area()

{

return 2 * (getLength() * getWidth()

+ getLength() * height

+ getWidth() * height);

}

class Box

public double area()

{

return getLength() * getWidth();

}

Java Programming: Program Design Including Data Structures 18

final Methods

⬧ Can declare a method of a class final using the
keyword final

public final void doSomeThing()

{

//...

}

⬧ If a method of a class is declared final, it cannot
be overridden with a new definition in a derived class

Java Programming: Program Design Including Data Structures 19

Calling methods of the superclass

⬧ To write a method’s definition of a subclass, specify a

call to the public method of the superclass

⬧ If subclass overrides public method of superclass,

specify call to public method of superclass:

super.MethodName(parameter list)

⬧ If subclass does not override public method of

superclass, specify call to public method of superclass:

MethodName(parameter list)

Java Programming: Program Design Including Data Structures 20

class Box

public void setDimension(double l, double w, double h)

{

super.setDimension(l, w);

if (h >= 0)

height = h;

else

height = 0;

}}

Box overloads the method setDimension

(Different parameters)

Java Programming: Program Design Including Data Structures 21

Defining Constructors of the

Subclass
⬧ Call to constructor of superclass:

⬧ Must be first statement

⬧ Specified by super parameter list

public Box()

{

super();

height = 0;

}

public Box(double l, double w, double h)

{

super(l, w);

height = h;

}

Access Control

⬧ Access control keywords define which classes can

access classes, methods, and members

Java Programming: Program Design Including Data Structures 22

Modifier Class Package Subclass World

public Y Y Y Y

protected Y Y Y N

none Y Y N N

private Y N N N

Java Programming: Program Design Including Data Structures 23

Polymorphism

⬧ Can treat an object of a subclass as an object of its
superclass

⬧ A reference variable of a superclass type can point to
an object of its subclass

Person name, nameRef;

PartTimeEmployee employee, employeeRef;

name = new Person("John", "Blair");

employee = new PartTimeEmployee("Susan", "Johnson",

12.50, 45);

nameRef = employee;

System.out.println("nameRef: " + nameRef);

nameRef: Susan Johnson wages are: $562.5

Java Programming: Program Design Including Data Structures 24

Polymorphism

⬧ Late binding or dynamic binding (run-time binding):

⬧ Method to be executed is determined at execution
time, not compile time

⬧ Polymorphism: to assign multiple meanings to the
same method name

⬧ Implemented using late binding

Java Programming: Program Design Including Data Structures 25

Polymorphism (continued)

⬧ The reference variable name or nameRef can point

to any object of the class Person or the class

PartTimeEmployee

⬧ These reference variables have many forms, that is,

they are polymorphic reference variables

⬧ They can refer to objects of their own class or to

objects of the classes inherited from their class

Java Programming: Program Design Including Data Structures 26

Polymorphism and References

Shape myShape = new Circle(); // allowed

Shape myShape2 = new Rectangle(); // allowed

Rectangle myRectangle = new Shame(); // NOT allowed

Java Programming: Program Design Including Data Structures 27

Polymorphism (continued)

⬧ Can also declare a class final using the keyword

final

⬧ If a class is declared final, then no other class

can be derived from this class

⬧ Java does not use late binding for methods that are

private, marked final, or static

⬧ Why not?

Java Programming: Program Design Including Data Structures 28

Casting

⬧ You cannot automatically make reference variable of
subclass type point to object of its superclass

⬧ Suppose that supRef is a reference variable of a
superclass type and supRef points to an object of its
subclass:

⬧ Can use a cast operator on supRef and make a
reference variable of the subclass point to the object

⬧ If supRef does not point to a subclass object and you
use a cast operator on supRef to make a reference
variable of the subclass point to the object, then Java
will throw a ClassCastException—indicating
that the class cast is not allowed

Java Programming: Program Design Including Data Structures 29

Polymorphism (continued)

⬧ Operator instanceof: determines whether a
reference variable that points to an object is of a
particular class type

⬧ This expression evaluates to true if p points to an
object of the class BoxShape; otherwise it
evaluates to false:

p instanceof BoxShape

Java Programming: Program Design Including Data Structures 30

Abstract Methods

⬧ A method that has only the heading with no body

⬧ Must be implemented in a subclass

⬧ Must be declared abstract

public double abstract area();

public void abstract print();

public abstract object larger(object,

object);

void abstract insert(int insertItem);

Java Programming: Program Design Including Data Structures 31

Abstract Classes

⬧ A class that is declared with the reserved word
abstract in its heading

⬧ An abstract class can contain instance variables,
constructors, finalizers, and non-abstract methods

⬧ An abstract class can contain abstract methods

Java Programming: Program Design Including Data Structures 32

Abstract Classes (continued)

⬧ If a class contains an abstract method, the class must

be declared abstract

⬧ You cannot instantiate an object of an abstract class

type; can only declare a reference variable of an

abstract class type

⬧ You can instantiate an object of a subclass of an

abstract class, but only if the subclass gives the

definitions of all the abstract methods of the

superclass

Java Programming: Program Design Including Data Structures 33

Abstract Class Example
public abstract class AbstractClassExample

{

protected int x;

public void abstract print();

public void setX(int a)

{

x = a;

}

public AbstractClassExample()

{

x = 0;

}

}

Java Programming: Program Design Including Data Structures 34

Interfaces

⬧ A class that contains only abstract methods and/or

named constants

⬧ How Java implements multiple inheritance

⬧ To be able to handle a variety of events, Java allows

a class to implement more than one interface

Java Programming: Program Design Including Data Structures 35

Composition

⬧ Another way to relate two classes

⬧ One or more members of a class are objects of

another class type

⬧ “has-a” relation between classes

⬧ For example, “every person has a date of birth”

Java Programming: Program Design Including Data Structures 36

Composition Example

Java Programming: Program Design Including Data Structures 37

Composition Example

(continued)

